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Dynamics of the spin-1
2 Heisenberg chain initialized in a domain-wall state
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We study the dynamics of an isotropic spin- 1
2 Heisenberg chain starting in a domain-wall initial condition

where the spins are initially up on the left half-line and down on the right half-line. We focus on the long-time
behavior of the magnetization profile. We perform extensive time-dependent density-matrix renormalization-
group simulations (up to t = 350) and find that the data are compatible with a diffusive behavior. Subleading
corrections decay slowly blurring the emergence of the diffusive behavior. We also compare our results with two
alternative scenarios: superdiffusive behavior and enhanced diffusion with a logarithmic correction. We finally
discuss the evolution of the entanglement entropy.
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I. INTRODUCTION

Many-body systems far from equilibrium led to many
fascinating theoretical ideas and experimental breakthroughs.
Despite the remarkable advances during the past decades
[1–3], a fundamental framework for nonequilibrium statistical
physics is still under intense development. Some progress has
been achieved by studying toy models amenable to numerical
or analytical analyses, such as classical interacting particle
systems, one-dimensional quantum spin chains, and cold
quantum gases [4–6]. Luckily, these mathematical models
turn out to be relevant for diverse experimental fields ranging
from cold atoms and magnetism to soft-condensed matter and
biophysical transport [7–11].

In classical physics, a thorough understanding of elemen-
tary systems, such as exclusion processes or solid-on-solid
growth models [2,12,13] has provided us with key insights
on far from equilibrium fluctuations [14], large deviations
[15], persistent influence of the initial conditions [16,17], and
hydrodynamic limits [18].

For quantum many-body systems, far from equilibrium
thermalization, integrability, and the initial preparation of
the system are fundamental riddles on which the recently
proposed [19,20] generalized hydrodynamics may shed new
light (see, e.g., Refs. [21–27] and references therein). At
its present stage, the generalized hydrodynamics approach
has been successfully applied to integrable one-dimensional
systems characterized by ballistic transport. It is usually
impossible to find explicit solutions of infinitely many cou-
pled Bethe-Boltzmann equations underlying the generalized
hydrodynamics, but very precise results have been obtained,
e.g., using iteration procedures [19–27].

Dynamics of integrable systems with sub-ballistic transport
remain more challenging even on the conceptual level. The
isotropic Heisenberg spin chain is the first integrable many-
body quantum system which is in principle solvable by the
Bethe ansatz [5,6,28], but its transport properties are still
beyond the reach of exact calculations. Here we investigate
the isotropic Heisenberg spin chain initialized in a domain-wall
initial condition. Spin transport in this system has been studied
extensively, and it has been claimed that the magnetization
profile displays an anomalous superdiffusive scaling behavior
(see Refs. [29,30] and references therein). The aim of the

present paper is to revisit this issue using large-scale numerical
simulations. To our knowledge our data are among the most
precise and extensive available at the moment, and they support
the simplest interpretation, namely, the diffusive transport. The
diffusive behavior is difficult to extract due to large subleading
corrections. The same phenomenon also was noticed in a very
recent calculation of the return probability after a quench in
the Heisenberg spin chain [31].

II. THE MODEL

We study the evolution of an XXZ spin- 1
2 chain,

initialized at time t = 0 in a domain-wall configuration
|↑↑ · · · ↑↑↓↓ · · · ↓↓〉 where all the spins in the left half of
the system are “up” (Sz = 1

2 ) and those in the right half are
“down” (Sz = − 1

2 ). At time t > 0 the wave function of the
system is then defined by

|ψ(t)〉 = exp(−iH t)|↑↑ · · · ↑↑↓↓ · · · ↓↓〉, (1)

where the Heisenberg Hamiltonian H is that of a XXZ chain
of length L with open boundary conditions,

H =
L/2−2∑

r=−L/2

(
Sx

r Sx
r+1 + Sy

r S
y

r+1 + �Sz
r S

z
r+1

)
, (2)

and � is the anisotropy parameter. We will focus in particular
on the long-time behavior of the magnetization profile:
m(r,t) = 〈ψ(t)|Sz

r |ψ(t)〉 [32].
This problem was studied first by Antal and co-workers

[33,34] in the free fermion case (� = 0) where an exact
analytical solution for the long-time limit of the magnetization
profile was obtained. A few years later the problem with
� �= 0 was studied numerically by Gobert et al. [35] us-
ing the time-dependent density-matrix renormalization-group
(DMRG) (see also Ref. [36]). For � < 1, the numerical results
implied that the magnetization satisfies the following scaling at
long times: m(r,t) = f (r/t). This ballistic propagation of the
magnetization front for � < 1 is by now well established and
has been confirmed by the calculation, in the long-time limit, of
the magnetization profile f using the hydrodynamic equations
derived from the thermodynamic Bethe ansatz for the XXZ

model [19–21]. The velocity of the front is given by the
simple formula vf = √

1 − �2 [21,31]. The velocity vanishes
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when � → 1−, and, when � > 1, the behavior is completely
different, and the magnetization profile freezes at long times
[35,37]. This should not be confused with the situation where
the system is initialized in a mixed state where both halves of
the chains are partially polarized (〈Sz〉left/right = ±μ/2 with
μ < 1). With such an initial state, the dynamics is diffusive
for � > 1 [29].

The situation in the isotropic case (� = 1) is much less
clear but particularly interesting. The early results of Gobert
et al. [35] indicated that the spreading of the magnetization
profile obeys a power-law ∼ tα with an exponent α around
0.6 (since this exponent is greater than 1

2 , the system is said
to be superdiffusive). More precisely, the authors of Ref. [35]
observed that the magnetization profiles at long times can be
described by the simple scaling form m(r,t) 
 g(r/tα) and that
the total magnetization (or charge) Q(t) = ∑L/2

r=0 [m(r,t) + 1
2 ]

transferred from the left to the right since t = 0 was increasing
proportionally to tα . Similar results have been obtained
by Ljubotina et al. [29,30], who, using simulations up to
t = 200, predict an exponent α in the range between 0.6
and 2

3 . These authors argue that a superdiffusive behavior is
also substantiated by transport properties of the anisotropic
Heisenberg model [38].

On the other hand, Stéphan has recently computed [31] the
return probability R(t) = |〈ψ(t)|ψ(0)〉|2 and showed that

R(t) ∼ √
t exp(−γ

√
t), where γ = ζ (3/2)/

√
π. (3)

As argued in Ref. [31], this result [39] is incompatible with
the exponent α larger than 1

2 : If the front spreads as tα ,
then the overlap of |ψ(t)〉 with the initial domain wall is
expected to satisfy R(t) � e−atα . This implies α � 1/2. We
also note that Collura et al. [21] analyzed the magnetization
profile in the vicinity of the edge of the light cone when
� → 1−, and this led them to conjecture a diffusive behavior at
� = 1.

We have performed numerical simulations of the Heisen-
berg spin- 1

2 chain up to the time t = 350. We will show
that, assuming a pure power law (as in Refs. [29,30,35]),
our data up to t = 350 indicate that α is smaller than 0.6.
More interestingly, the same data are perfectly compatible
with a diffusionlike exponent α = 1

2 , provided one includes
some subleading corrections that vanish in the long-time
limit. Finally, we also probe the validity of the third scenario
where the diffusive behavior is marginally enhanced by a
multiplicative logarithmic correction term.

III. NUMERICAL RESULTS

In Fig. 1, we show the evolution of the magnetization profile
up to t = 350, a final time significantly longer than the time
t = 200 reached in the simulations of Ref. [30]. In order to
analyze quantitatively how this profile spreads in time, we plot
the magnetization Q(t) transferred from the left to the right
since t = 0 (top of Fig. 2) and its time derivative, the current
I (t) = i〈ψ(t)|S+

0 S−
1 − S−

0 S+
1 |ψ(t)〉 measured in the center of

the chain (bottom of Fig. 2). Some details about the numerical
method are given in Appendix A.
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FIG. 1. Magnetization profiles at different times. Simulation
parameters: maximum bond dimension χ = 2000, Trotter step τ =
0.3, and system size L = 800 sites (only 300 sites in the center are
shown here).

A. Extracting an effective exponent: Superdiffusive behavior?

We start by performing an analysis similar to that of
Refs. [29,35], where Q(t) is fitted using a simple power law:
Q(t) 
 tα . The results of three different fits are shown in Fig. 3
where the data are plotted using a log-log scale. Depending
on the time window used for the fit ([50,200], [200,300], or
[300,350]), we extract a value of α between 
0.596 and 0.58
(more details in Table I). We emphasize that this effective
exponent decreases with times, and its true value is therefore
very likely to be smaller than the value of 3

5 proposed in
Refs. [29,30]. It is plausible that the effective value of α

would decrease if one could perform simulations that last
even longer (going over t = 400 is difficult for the moment).
Besides, the current exhibits oscillations that hinder a precise
determination of the exponent. These facts encouraged us to
look for alternative interpretations of our numerical data and to
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FIG. 2. Top: Magnetization Q(t) transferred from the left to
the right since t = 0. Bottom: Current I (t) = d

dt
Q(t). Simulation

parameters: maximum bond dimension χ = 2000, Trotter step
τ = 0.3, and system size L = 800 sites.
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FIG. 3. The same data as in Fig. 2, displayed on a log-log scale.
Top: The data are fitted to some power-law Q(t) ∼ tα . Depending on
the time window used for the fit ([50,200], [200,300], or [300,350], we
get α between 
0.596 and 0.582 (see also Table I). Bottom: Current
I (t) is compared with the derivative of the power laws obtained in
the above fits.

examine whether it could be compatible with a more orthodox
diffusive behavior.

B. Diffusion with subleading corrections

We now show that the data obtained from the DMRG
simulations are perfectly compatible with a diffusive exponent
α = 1

2 , provided one includes some correction terms in the
long-time expansion. We will discuss two possibilities: (i) a
subleading 1/t correction in I (t) or (ii) some multiplicative
logarithm.

The current I (t) is not given by a pure power law for
any finite range of t . First, as is clear from Fig. 4, there is
an oscillatory behavior (for a more quantitative discussion
of these oscillations, see Appendix B). Besides, even if
the oscillations are averaged out, there remain subleading

TABLE I. Variations of the fitted exponent α [obtained from Q(t)
on a log-log scale as in Fig. 3] with respect to the DMRG simulation
parameters. The second column is the standard error from the least-
squares fit (does not take into account the possible variations with χ

and τ ). It should be recalled that decreasing the Trotter step τ at fixed
χ does not necessarily give more precise calculations as it implies
more frequent matrix truncations along the time evolution.

α Fit error Time window N τ Bond dimension χ

0.5980 ±0.00030 [50,150] 800 0.3 2000
0.5958 ±0.00023 [50,200] 800 0.3 2000
0.5958 ±0.00051 [50,200] 800 0.2 3000
0.5851 ±0.00024 [200,300] 800 0.3 2000
0.5845 ±0.00036 [200,300] 600 0.3 1000
0.5825 ±0.00040 [300,350] 800 0.3 2000
0.5819 ±0.00037 [300,350] 800 0.4 1000
0.5805 ±0.00056 [300,350] 600 0.2 2000
0.5798 ±0.00053 [300,350] 600 0.3 1000
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FIG. 4. Current I (t) multiplied by
√

t to highlight the long-time
part. The data appear to be well fitted by a function of the type
a − bt−1/2 (the green line). Fit window: [200:350].

corrections to the dominant asymptotic contribution to I (t).
Conjecturing a normal diffusive scenario, it is natural to expect
that I (t) will admit some long-time expansion in powers
of t−1/2 of the form I (t) = t−1/2(a + bt−1/2 + ct−1 + · · · ).
Keeping only the first two terms in this expansion, we observe
in Fig. 4 that the current I (t) is very well approximated by the
form

I (t) 
 at−1/2 − bt−1, (4)

with a ≈ 0.867 and b ≈ 1.43. Equivalently, by integration,
we obtain that the total magnetization transferred exhibits a
logarithmic correction to the dominant

√
t behavior,

Q(t) 
 R(t), R(t) = 2at1/2 − b ln(t) (5)

It is interesting to compare this result with the return
probability given by Eq. (3). As explained in Ref. [31], the
quantity l(t) = − ln[R(t)] can be seen as a typical length
scale over which the initial state and |ψ(t)〉 differ. This gives
l(t) ∼ γ

√
t − 1

2 ln(t) + O(1), which also includes a sublead-
ing logarithmic term as is the case for R(t) in Eq. (5). Figure 5
indeed shows that a good collapse of the magnetization profiles
is obtained if the distance R(t) is used as a dynamical length
scale.

Finally, we consider a last scenario where the transferred
magnetization has

√
t behavior that is corrected by a multi-

plicative logarithmic factor,

Q(t) 
 c
√

t[1 + d ln(t)], (6)

which is equivalent to

I (t) 
 1
2ct−1/2[1 + 2d + d ln(t)]. (7)

In that case, the profile does display a superdiffusive behavior
but with a marginal enhancement. The result of a fit using
Eq. (6) is shown in Fig. 6, and this expression also matches the
data quite well. Having extracted empirical values for c and d

from the fit [Eq. (6)], we checked the accuracy of Eq. (7), see
Fig. 6 (bottom): The agreement is fairly good.
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FIG. 5. Magnetization profiles at different times, plotted as a
function of the rescaled distance r/R(t), where R(t) is defined in
Eq. (5). The coefficients a and b used to define R(t) are those obtained
by fitting the current I (t) in Fig. 4.

C. Entanglement entropy

The entanglement entropy of a subsystem A is
defined by S(t) = −TrA[ρA(t) ln ρA(t)], where ρA(t) =
TrB[|ψ(t)〉〈ψ(t)|] is the reduced density matrix of region A

and is obtained by tracing out the spins in the complement B

of region A. Figure 7 shows S(t), the entanglement entropy of
the left half of the chain. The results obtained with different
simulation parameters are compared, and the small differences
between them turn out to be practically invisible at the
scale of the figure. This indicates that the chosen parameters
(maximum bond dimension χ , Trotter time-step τ , and system
size L) provide a good precision up to the longest times reached
in these calculations.

Concerning the long-time behavior of S(t), we observe
(Fig. 7) that the data are compatible with a logarithmic
growth as well as with a power law. A logarithmic entropy
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t and comparison with the derivative of the function D(t) above.
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FIG. 7. Entanglement entropy S(t) as a function of time for a
bipartition in the center of the chain. The results for three different
sets of simulation parameters are displayed (χ : maximum bond
dimension; τ : Trotter step; and L: system size). The black dashed
line is a fit to ∼ ln(t). The blue one is a fit to a power law, giving
an exponent 0.23 which is relatively close to that (0.25) proposed in
Ref. [29]. Both fits are performed using the data for t � 150.

growth is a common behavior after a local quench in a
one-dimensional critical system, and this can be understood
using conformal field theory methods [40–42]. It was however
argued in Ref. [29] that, in the present case, the entropy grows
algebraically, S ∼ tβ with β ≈ 0.25. We indeed find that a
power law with a small exponent seems to reproduce the data
over a larger time window than S ∼ ln(t), but it nevertheless is
difficult to draw a firm conclusion from the available numerical
data. Investigating the full counting statistics (and its relations
to entanglement [43–46]) might be a way to make progress on
this question.

We also consider S(t,r), the entanglement entropy asso-
ciated with a left-right partition of the chain performed at
position r (the origin r = 0 being here the center of the bond
located in the middle of the chain). The resulting entropy
profiles are displayed in Fig. 8. A first observation is that,
using the rescaled position r/t , the data obtained at different
times approximately collapse on a single curve, at least, for
r/t � 0.3. So, contrary to the magnetization which spreads
relatively slowly in time, and certainly not in a ballistic way,
the entanglement entropy is well fitted by S(t,r) 
 s(r/t) at
sufficiently long times. We also note that the tip of the entropy
profile at r/t 
 1 corresponds to the maximum group velocity
v = 1 of a single magnon in a ferromagnetic background
as also noted in Ref. [31]. It is also intriguing to note
some shoulderlike structures around r/t 
 0.5, r/t 
 0.33,
and possibly around 0.25 too. These could be related to the
propagation of some magnon bound states as discussed in
Refs. [47,48] in the context of a different quench in the XXZ

spin chain. Closer to the center of the chain, the entropy profiles
at different times clearly do not overlap. For the longest times
shown in Fig. 8, this happens for r/t � 0.3. It turns out that
this corresponds to the spatial region of width ∼√

t where
the magnetization deviates significantly from ± 1

2 . So, we may
expect that the entropy data should collapse for r/t � t−1/2.
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dimension χ = 2000, time-step τ = 0.3, and system size L = 800.
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Since the entropy S(t,r = 0) in the center diverges with
time (Fig. 7), the existence of a limiting profile s(x) with a
divergence at x = 0 seems to be a plausible scenario.

IV. DISCUSSION

We have analyzed the magnetization profile and the spin
current in the isotropic Heisenberg spin- 1

2 chain starting from a
quench where the system is initially prepared in a domain-wall
product state.

Although many quantities can be computed at thermal
equilibrium, no analytical calculation of the shape of the
evolving magnetization profile in the infinite system is known.
Even the scaling with the time of the typical size of the
profile is unknown and subject to controversy. Whereas in
the anisotropic case, the profile is either ballistic (for � < 1)
or frozen (for � > 1), it is not clear whether the isotropic
point � = 1 displays normal diffusion or is superdiffusive
with respect to time.

Recent numerical simulations have been interpreted in favor
of superdiffusive behavior with an exponent close to 3/5. We
have performed large-scale numerical simulations indicating
that the effective exponent, evaluated over a finite window of
time, is smaller than this value. Moreover, we show that the
numerical data can be very well interpreted in favor of normal
diffusion behavior provided that subleading corrections to the
dominant behavior (which are known always to exist) are taken
into account. This interpretation implies that the dynamical
length scale grows as the square root of the time with a
logarithmic correction, in agreement with the exact calculation
of the return probability. Although it may be possible to
improve the numerical simulations to reach even longer times,
we believe that the time is ripe for analytical investigations
of this vexing problem either by using integrability or by
studying some effective and simplified models and comparing
predictions with the accurate numerical data that the DMRG
method and its variants allow us to gather.
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FIG. 9. Current I (t) multiplied by
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t . The precision of the
DMRG simulation is checked by varying some parameters: max-
imum bond dimension χ , Trotter step τ , and system size L. The
bottom panel is a zoom on the long-time part of the data. Note
that the value χ = 500 (with τ = 0.3, the red curve in the top
panel) appears to be too small to achieve a sufficient precision
beyond t ∼ 200. On the other hand, the calculations with (τ,χ ) =
(0.3,1000), (0.4,1000), (0.2,2000), and (0.3,2000) match up to t 

200. They give very close results up to t 
 300 (the green, blue,
and black curves differ by less than 0.5% in relative value) and stay
relatively close to each other up to t = 350 (relative differences below
1%).
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APPENDIX A: DETAILS ABOUT THE DMRG
SIMULATIONS

Our calculations are performed using a time-dependent
DMRG algorithm, implemented using the C++ ITENSOR

library [49]. The evolution operator U = exp(−iτH ) for a
time-step τ is approximated by a matrix-product operator [50]
using a fourth-order Trotter scheme. Unless specified other-
wise, we use a time-step τ = 0.3, system size L = 800, and
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matrix-product state representations of |ψ(t)〉 with matrices of
sizes up to χ = 2000 [52].

To check the accuracy, calculations with some smaller χ as
well as with various values of τ and L were performed. As can
be seen in Fig. 9, the different simulations agree very well at the
scale of the figures up to t 
 300, and their relative differences
stay smaller than 1% up to the longest time of t = 350. The
precision of the results also can be judged by looking at how the
estimated value of the exponent α depends on the simulation
parameters τ, χ , and L. As shown in Table I, these effects

are relatively small. Finally we note that the entanglement
entropy is often quite sensitive to truncation errors in DMRG
simulations, and the good convergence observed in Fig. 7 for
different simulations parameters is also a good check of the
precision of the results.

APPENDIX B: CURRENT OSCILLATIONS

As already noticed in Ref. [31], the current I (t) displays
some oscillations. We observe that their amplitudes decay
slowly with time in a way which is compatible with a 1/t

behavior. In addition, the signal is dominated by a few
harmonics with periods �t = 2π, 6π, 12π , and 24π . To make
these remarks concrete, we have fitted the data using the
following function:

I (t) 
 a√
t

+ 1

t
[b + c1 cos(t + φ1)

+ c3 cos(t/3 + φ3) + c6 cos(t/6 + φ6)

+ c12 cos(t/12 + φ12)], (B1)

and the result is displayed in Fig. 10. We note that dropping
the c12 term provides a relatively good fit too (data not shown),
whereas including an additional cos(t/24) term makes it even
better. As expected, the numerical values we obtain for a and
b are close to those obtained without the oscillatory terms
in Fig. 4. It should finally be noted that the (shortest) period
�t = 2π of the first cosine term is a natural time in the problem
since it corresponds to the energy change �E = 1 induced by
one spin flip in the ferromagnetic state: | · · · ↑↑ ↑ ↑↑ · · · 〉 →
| · · · ↑↑ ↓ ↑↑ · · · 〉.
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